GUIDELINE

Stud framework

Part D Materials and Workmanship

Part F Ventilation

Acceptable Construction Details

Acceptable Construction Details Introduction Thermal Bridging and Airtightness

Insulation in Cavity

• Diagram H ACD - 30 Ope split Lintels Ste... • Diagram H ACD - 12 Concrete Intermediate... • Diagram H ACD - 39 Concrete Forward cill... • Diagram H ACD - 38 Concrete backward cil... • Diagram H ACD - 19 Eaves Unventilated At... • Diagram H ACD - 40 Eaves Wall head close... • Diagram H ACD - 29 Flat roof parapet - I... • Diagram H ACD - 9 Insulation below groun... • Diagram H ACD - 33 Prestressed Concrete ... • Diagram H ACD - 22 Eaves Insulation betw... • Diagram H ACD - 15 Timber separating flo... • Diagram H ACD - 17 Masonry Partition Wal... • Diagram H ACD - 18 Stud partition wall -... • Diagram H ACD - 7 Insulation above groun... • Diagram H ACD - 21 Eaves Insulation betw... • Diagram H ACD - 14 Timber Intermediate f... • Diagram H ACD - 27 Gable Insulation betw... • Diagram H ACD - 26 Gable Insulation betw... • Diagram H ACD - 11 Timber suspended grou... • Diagram H ACD - 23 Eaves Insulation betw... • Diagram H ACD - 32 Ope Perforated Steel ... • Diagram H ACD - 20 Eaves Ventilated Atti... • Diagram H ACD - 34 Ope Jamb with closer ... • Diagram H ACD - 29 Flat roof Eaves - Ins... • Diagram H ACD - 8 Insulation above grou... • Diagram H ACD - 13 Concrete Intermediate... • Diagram H ACD - 28 Gable Insulation betw... • Diagram H ACD - 35 Ope Jamb with proprie... • Diagram H ACD - 36 Corner Inverted Corne... • Diagram H ACD - 16 Masonry solid and cav... • Diagram H ACD - 25 Eaves Insulation betw... • Diagram H ACD - 10 Insulation below grou... • Diagram H ACD - 37 Galvanised Top steel ...

Irish Water Requirements for Dwellings

Typical Inspection Reports

No 2. Inspection Foundations Radon Sump Barrier and Blinding No 26 Inspection of Windows on Rainwater System No 11. Inspection of Block work, Brickwork and feature stone band No 2. Inspection Foundations Radon Sump Barrier and Blinding No 12. Inspection of Block work, gable and party walls. No 28. Inspection of timber stairs installation No 3. Inspection Radon Barrier Blinding and Insulation No 22 Inspection Steel Beams and Intumescent paint No 4. Inspection of Radon Barrier and DPC No 25 Inspection of Windows on Front Elevations, DPM and Control Joint No 5. Inspection Radon Barrier Rising Walls Block and Brickwork No 17. Inspection of Stud wall construction No 8. Inspection of Blockwork and elements No 14 Inspection of Structural Beams No 23 Inspection of windows and doors being installed No 21 Inspection of Electrical first fix No 19. Inspection of Roof Construction and breathable membrane No 27 Inspection of Windows on Velux Rooflights No 10. Inspection of Joisting , bridging, Block work, Brickwork and Lintel supports No 16. Inspection of Stud wall construction. No 7. Inspection of Rising walls, Damp proof Course and Blockwork. No 18. Inspection of Roof Construction. No 7. Inspection of Chasing Block work, Brickwork and feature stone band No 6. Inspection Rising Walls Block and Brickwork No 8. Inspection of Radon Barrier and Damp proof Course. No 30 Inspection of timber stairs handrail installation No 15. Inspection of Stud wall and floor joist construction No 29. Inspection of timber stairs and handrail during construction stages No 3. Inspection Radon Barrier Blinding and Insulation No 31. Inspection of Timber stairs handrail. No 32. Inspection of Roof Access Hatch No 24 Inspection of Windows on Front and Rear Elevations No 20. Inspection of chasing in block party walls for electrical first fix No 13. Inspection Brickwork and Firestopping No 9. Inspection of Brick and Block work from 1st to 2nd floor

Stud framework

Share

Stud framework has the critical role in external walls of acting as the vertical load-bearing skeleton of the wall. The framework also acts against resisting lateral wind loads and provides a base for the fixing of plasterboard, timber sheeting etc.

Through design, vertical loads exerted on the wall panel need to occur directly over the centerline of the studs or offset either side of the centerline by no more than the thickness of the supporting stud. Typical studwork construction places studs at 400 or 600mm centers; where a vertical load cannot be positioned over a stud or with acceptable offset off the centerline, the use of a head plate is recommended.

For normal loads such as those from the roof structure or floor joists a double rail header is sufficient to allow loads to be located between studs. However, additional studs or posts beneath the header can be installed if there is a requirement to support heavier loads.

Shop Screws